A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

نویسندگان

  • Longyu Kuang
  • Hang Li
  • Longfei Jing
  • Zhiwei Lin
  • Lu Zhang
  • Liling Li
  • Yongkun Ding
  • Shaoen Jiang
  • Jie Liu
  • Jian Zheng
چکیده

A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

Articles you may be interested in Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the ...

متن کامل

Lead (Pb) Hohlraum: Target for Inertial Fusion Energy

Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel s...

متن کامل

Direct-Drive Target Designs for the National Ignition Facility

LLE Review, Volume 79 121 The National Ignition Facility (NIF) is currently under construction at Lawrence Livermore National Laboratory (LLNL). One of the primary missions of the NIF is to achieve fusion ignition by means of inertial confinement fusion (ICF). Two main approaches have been considered for achieving thermonuclear yield in ICF. The first approach, known as indirectdrive ICF,1 encl...

متن کامل

Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion

In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...

متن کامل

Energy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion

In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016